

Seva Mandal Education Society's

Smt. Kamlaben Gambhirchand Shah Department of Computer Applications

under

Dr. Bhanuben Mahendra Nanavati College of Home Science (Autonomous)

NAAC Re-Accredited 'A+' Grade with CGPA 3.69 / 4 UGC Status: College with Potential for Excellence 'Best College Award 2016-17' adjudged by S.N.D.T. Women's University Smt. Parmeshwari Devi Gordhandas Garodia Educational Complex 338, R.A. Kidwai Road, Matunga, Mumbai - 400019. Tel: 24095792 Email: smesedu@gmail.com

APPROVED SYLLABUS UNDER AUTONOMY

PROGRAMME: MASTER OF SCIENCE (COMPUTER SCIENCE)

DEPARTMENT OF COMPUTER APPLICATIONS SEMESTER – II (2020-21)

PROGRAM OBJECTIVES

This program will enable the students to:

- 1. Gain in-depth knowledge in the key areas of computer science and practice in emerging, cutting edge Computational Technologies.
- 2. Develop software solutions to real world problems through Information Technological skills with international standards and facilitate them to be outstanding professionals.
- 3. Contribute to scientific research by independently designing, conducting and presenting the results of small-scale research.
- 4. Be a part of skilled manpower in the various areas of computer science such as Algorithm Analysis and Design, Data warehousing and Mining, Software Engineering, Advanced Computing technologies, Web-based Applications Development, and Data Science.

PROGRAM OUTCOME

The completion of the post-graduation programme:

1. Takes forward the knowledge gained by the students at the undergraduate level and provides them with an advanced level of learning and understanding of the subject.

- 2. Provides students with higher educational degree of technical skills in problem solving and application development.
- 3. Helps students to acquire an analytical and managerial skills to enhance employment potential.

PROGRAM SPECIFIC OUTCOME

- 1. The main outcome of this programme is enhancement in the Technical and Analytical skills of computer science enthusiasts and provide them with the perfect amalgamation of theory as well as practical knowledge in the various thrust areas of the field.
- 2. The students will acquire broad knowledge in core areas of computer science, current and emerging computing technologies.
- 3. The students also acquire a research oriented professional approach to provide sustainable solution to real life problems which can be solved using computational technologies.

Eligibility

- A Science Graduates in
 - o BSc. (Physics),
 - o BSc. (Maths.),
 - o BSc (Elect.),
 - BSc. (IT),
 - B.Sc. (CS) or
 - $\circ \ \ BCA \ or$
 - o any engineering graduate in allied subject from the recognized university

with an aggregate mark not less than 50% (Open Category) and 45% (Reserved category).

• Mathematics at 12th Level or 100 marks mathematics studied at graduation level is minimum requirement.

Master of Science (Computer Science) SYLLABUS M.Sc. (COMPUTER SCIENCE) SEMESTER - II (FIRST YEAR) PROPOSED SYLLABUS FOR THE ACADEMC YEAR 2020-21

Course Code	Course	Course Type	Teaching Period / Week		Credit			Duration of Theory Exam (in Hrs.)
			L	Pr./ Tu	Int.	Ext.	Total	
MCS201	Mobile Communication and Wireless Technology	CC	4	-	2	2	4	2
MCS202	Data Analytics and Mining		4	-	2	2	4	2
MCS203	Research Methods and Statistical Analysis	SEC	4	-	2	2 2 4		2
MCSL204	Data Analytics and Mining Lab	CC	-	2	1	1	2	1
MCSL205	Statistics Lab	AECC		2	1	1	2	1
MCSL206	Advanced Java Lab	CC	-	2	1	1	2	1
MCSL207	Advanced Python Lab	CC	-	2	1	1	2	1
Choice Bas	ed Credit System (CBCS)	1				L		•
MCS208A	Distributed Systems (CBCS)	SEC	4	-	2	2	4	2
MCS208B	Computer Graphics (CBCS)	SEC	4	-	2	2	4	2
MCS208C	Natural Language Processing (CBCS)	SEC	4	-	2	2	4	2
MCS208D	Swayam or other online courses (CBCS)	SEC	4	_	2	2	4	2
	Total		16	8			24	-

	1 Credit=25 Marks
SEMESTER-II	Total Credits = 24
	Total Marks = 24*25=600

COURSE TITLE : MOBILE COMMUNICATION AND WIRELESS TECHNOLOGY

COURSE OBJECTIVES:

- To learn the concepts of wireless communication and mobile networks
- To identify different wireless technologies and its applications
- To acquire knowledge on generation of cellular networks and its standards used

LEARNING OUTCOMES:

- Understand the concept of cellular communications, advantages and its limitations
- Compare the various wireless technologies and its applications
- Apply the appropriate technology in the applications

Code	Course	Teaching Period / Week		Credit			Duration of Theory
		L	Pr./ Tu	Int.	Ext.	Total	Exam (in Hrs.)
MCS201	Mobile Communication and Wireless Technology	4	-	2	2	4	2

Module	Objective	Content	Evaluation
<u>No.</u>	To introduce to basic concepts of wireless networking	Fundamentals of Wireless Technology Introduction to Mobile and wireless communications, Overview of radio transmission frequencies, Signal Antennas, Signal Propagation, Multiplexing – SDM,FDM, TDM,CDM, Modulation – ASK,FSK,PSK, Advanced FSK, Advanced PSK, OFDM, Spread Spectrum – DSSS,FHSS, Wireless Transmission Impairments – Free Space Loss, Fading, Multipath Propagation, Atmospheric Absorption, Error Correction – Reed Solomon, BCH, Hamming code, Convolution Code (Encoding and Decoding)	Students will be evaluated by taking viva. (Marks 05)
2	To elaborate wireless and cellular wireless network	Wireless and Cellular wireless Networks Wireless network, Wireless network Architecture, Classification of wireless networks – WBAN, WPAN, WLAN, WMAN, WWAN., IEEE 802.11, IEEE 802.16, Bluetooth – Standards, Architecture and Services, Cellular wireless Networks, Principles of cellular networks – cellular network organization, operation of cellular systems, Handoff., Generation of cellular networks – 1G, 2G, 2.5G, 3G and 4G.	Written Unit Test – I (Marks 25)
3	To elaborate the concept of mobile	Mobile Communication System GSM – Architecture, Air Interface, Multiple Access Scheme, Channel Organization, Call Setup Procedure,	Written Class Test will be conducted. (Marks 10)

	communicatio n system	Protocol Signaling, Handover, Security, GPRS – Architecture, GPRS signaling, Mobility management, GPRS roaming, network, CDMA2000- Introduction, Layering Structure, Channels,Logical Channels, Forward Link and Reverse link physical channels, W-CDMA – Physical Layers, Channels, UMTS – Network Architecture, Interfaces, Network Evolution, Release 5, FDD and TDD, Time Slots, Protocol Architecture, Bearer Model, Introduction to LTE	
4	To elaborate different layers of mobile network	Mobile network, transport and application layers Mobile IP – Dynamic Host Configuration Protocol, Mobile Ad Hoc Routing Protocols– Multicast routing, TCP over Wireless Networks – Indirect TCP – Snooping TCP – Mobile TCP – Fast Retransmit / Fast Recovery Transmission/Timeout Freezing-Selective Retransmission – Transaction Oriented TCP, TCP over 2.5 / 3G wireless Networks, WAP Model- Mobile Location based services - WAP Gateway –WAP protocols – WAP user agent profile, Caching model-wireless bearers for WAP - WML – WMLScripts – WTA.	Assignments will be given for the above topics. (Marks 10)

Evaluation	Details	Marks
	(* please give details of assessment in terms of Unit test/ Project/ quiz /or other assignments and marks allotted for it)	
Internal	 Unit test Viva Test Class Test Assignments 	50 Marks
External	Final Examination	50 Marks
	Total marks	100 Marks

TEXT BOOKS:

- 1) Saha Misra (2010), *Wireless Communications and Networks, 3G and Beyond*, Second Edition, McGraw Hill Education
- 2) Vijay K. Garg, Wireless Network Evolution 2G to 3G, (2011), Pearson Publications.

REFERENCE BOOKS:

- 1) Yi Bang Lin, ImrichChlamtac, Wireless and Mobile Network Architectures, Wiley India.
- 2) Dr. Sunilkumar S. Manvi, Mahabaleshwar S. Kakkasageri, *Wireless and Mobile Networks*, *Concepts and Protocols*, Wiley India
- 3) K. Fazel, S. Kaiser, (2010), *Multi-Carrier and Spread Spectrum Systems From OFDM and MC-CDMA to LTE and WiMAX*, Second Edition, Wiley publications
- 4) Yi-Bing Lin, Ai-Chun Pang, (2012), Wireless and Mobile All-IP Networks, Wiley Publications

COURSE TITLE : DATA ANALYTICS AND MINING

COURSE OBJECTIVES:

- To acquire the knowledge of various concepts and tools behind mining data for business intelligence
- To Study data mining algorithms, methods and tools
- To Identify business applications of data mining

LEARNING OUTCOMES:

- Apply data mining concepts for data analysis and report generation
- Develop industry level data mining skills using software tools
- Make use of relevant theories, concepts and techniques to solve real-world business problems

Code	Course	Teaching Period / Week		Credit			Duration of Theory
		L	Pr./ Tu	Int.	Ext.	Total	Exam (in Hrs.)
MCS202	Data Analytics and Mining	4	-	2	2	4	2

Module	Objective	Content	Evaluation
No.			
1	This module introduces students to the concept of data analytics	Data Analytics Introduction, Data Summarization and visualization, Linear, Non-linear regression, model selection	Online Test (Marks 5)
2	This module provides background on data objects and statistical concepts. It introduces techniques for preprocessing data before mining.	Data Mining and Data Preprocessing What is data mining?, Knowledge discovery- KDD process, related technologies - Machine Learning, DBMS, OLAP, Statistics, Data Mining Goals, stages of the Data Mining Process, Data Mining Techniques, Knowledge Representation Methods. Data cleaning, Data transformation, Data reduction, Discretization and generating concept hierarchies. introduction to data warehousing, OLAP, and data generalization. Data Cube Computation and Multidimensional Data Analysis	Written Unit Test – I (Marks 25)
3	This unit covers supervised learning method as classification and Prediction	Classification and Prediction Decision tree, Bayesian classification, rule-based classification, neural networks, support vector machines, associative classification, k-nearest-neighbor classifier, case-based reasoning.	Assignmen ts will be given for the above topics. (Marks 10)
4	This unit covers unsupervised learning method as clustering	Clustering and Association Rule Mining Partitioning, hierarchical, density-based, grid- based, and model-based methods data clustering.	Assignmen ts will be given for

and association rule	Mining Frequent Patterns, Associations, and	the above
mining	Correlations	topics.
To gain detailed	Outlier Detection: Detection of anomalies, such as	(Marks 10)
insights of outlier	the statistical, proximity-based, clustering-based,	、
detection	and classification-based methods.	

Evaluation	Details	Marks		
	(* please give details of assessment in terms of Unit test/ Project/ quiz /or other assignments and marks allotted for it)			
Internal	 Unit test Online Test Assignments 	50 Marks		
External	Final Examination	50 Marks		
	Total marks			

TEXT BOOKS:

- 1. Shashi Shekhar and Sanjay Chawla, (2003), *Spatial Databases: A Tour*, Prentice Hall (ISBN 013-017480-7)
- 2. Avi Silberschatz, Henry F. Korth, S. Sudarshan, *Database System Concepts*, 5th edition, (2010), McGraw-Hill

REFERENCE BOOKS:

- 1. Stefano Ceri and Giuseppo Pelagatti, (1984), *Distributed Database; Principles & Systems*, McGraw-Hill International Editions
- 2. Raghu Ramakrishnan and Johannes Gehrke, (2002), *Database Management Systems*, 3rd edition, McGraw-Hill.
- 3. Elmasri and Navathe, (2003), *Fundamentals of Database Systems*, 6thEdition, Addison. Wesley.
- 4. Shio Kumar Singh, (2011), *Database Systems: Concepts, Design and Applications*, 2nd edition, Pearson Publishing
- 5. Multi-dimensional aggregation for temporal data. M. Böhlen, J. Gamper, and C.S. Jensen. In Proc. of EDBT-2006, pp. 257-275, (2006).
- 6. R.H. Güting and M. Schneider (2005), *Moving objects databases*, Morgan Kaufmann Publishers, Inc.
- 7. Paulraj Ponniah, (2010), Data Warehousing fundamentals, JohnWiley.

COURSE TITLE : RESEARCH METHODS AND STATISTICAL ANALYSIS

COURSE OBJECTIVES:

• To understand Research and Research Process

- To acquaint students with identifying problems for research and develop research strategies
- To familiarize students with the techniques of data collection, analysis of data and interpretation

LEARNING OUTCOMES:

Students will be able to:

- Prepare a preliminary research design for projects in their subject matter areas
- Accurately collect, analyse and report data
- Present complex data or situations clearly
- Review and analyse research findings Get the knowledge of objectives and types of research

Code	Course	Teaching Period / Week		Credit			Duration of Theory
		L	Pr./ Tu	Int.	Ext.	Total	Exam (in Hrs.)
MCS203	Research Methods and Statistical Analysis	4	-	2	2	4	2

Module No	Objective	Content	Evaluation
1		Introduction to Research methodology	Unit Test-1
	To introduce	An Introduction Objectives of Research, Types of	(Marks-25)
	students to the	Research, Research Methods and Methodology,	
	concept of research	defining a Research Problem, Techniques involved	
	-	in Defining a Problem	
		Review of Literature, Research Design	
2		Need for Research Design, Features of Good	
	To elaborate	Design, Different Research Designs, Basic	
	importance of	Principles of Experimental Designs, Sampling	
	literature review	Design, Steps in Sampling Design, Types of	
	and research design	Sampling Design, Sampling Fundamentals,	
		Estimation, Sample size Determination, Random	
		sampling. Measurement and Scaling Techniques	
		Measurement in Research	
		Data Collection and Processing	Assignment
3		Methods of Data Collection and Analysis Collection	(Marks-10)
	To learn data	of Primary and Secondary Data, Selection of	
	collection and	appropriate method Data Processing Operations,	
	processing methods	Elements of Analysis.	
		Statistical Analysis and Presentation	Online Test
4	To learn data	Statistics in Research, Measures of Dispersion,	(Marks-15)
	analysis and	Measures of Skewness, Regression Analysis,	
	presentation of the	Correlation, Quantitative data analysis, Techniques	
	results	of Hypotheses, Parametric or Standard Tests Basic	
		concepts, Tests for Hypotheses I and II, Important	

	parameters limitations of the tests of Hypotheses,	
	Chi-square Test, Comparing Variance, As a non-	
	parametric Test, Conversion of Chi to Phi, Caution	
	in using Chi-square test, representation of research.	

Evaluation	Details (* please give details of assessment in terms of Unit test/ Project/ quiz /or other assignments and marks allotted for it)	Marks
Internal	 Unit test Online Test Assignments 	50 Marks
External	Final Examination	50 Marks
	Total marks	100 Marks

TEXT BOOKS:

1) Brinoy J Oates, (2006), *Researching Information Systems and Computing*, Sage Publications India Pvt Ltd

REFERENCE BOOKS:

- 1) Kothari, C.R., (1985), Research Methodology, Methods and Techniques, third edition, New Age International
- 2) Juliet Corbin & Anselm Strauss, (2008), Basic of Qualitative Research (3rd Edition), Sage Publications
- 3) Willkinson K.P, L Bhandarkar, (2010), Formulation of Hypothesis, Hymalaya Publication, Mumbai
- 4) John W Best and V. Kahn, (2010), Research in Education, PHI Publication.

COURSE TITLE : DATA ANALYTICS AND MINING LAB

COURSE OBJECTIVES:

- To acquire the knowledge of various concepts and tools behind data mining for business intelligence
- To Study data mining algorithms, methods and tools
- To Identify business applications of data mining

LEARNING OUTCOMES:

- Apply data mining concepts for analysis of data
- Develop industry level data mining skills using software tools
- Make use of relevant theories, concepts and techniques to solve real-world business problems

Code	Course	Teaching Period / Week		Credit			Duration of Theory
		L	Pr./ Tu	Int.	Ext.	Total	Exam (in Hrs.)
MCSL204	Data Analytics and Mining Lab	-	2	1	1	2	1

Module No	Objective	Content	Evaluation
1	To elaborate the concept of data preprocessing	Data Preprocessing Data cleaning, data transformation, Data reduction, Discretization and generating concept hierarchies, Installing Weka 3 Data Mining System, experiments with Weka - filters, discretization	Students will be evaluated using Lab Manual. (Marks 05)
3	To implement classification and prediction	Data Mining (Supervised Learning) Using Weka/R Miner Classification Prediction	Practical Exam will be conducted. (Marks 15)
4	To implement clustering and association rule mining	Data Mining (Unsupervised Learning) using Weka/R Miner Clustering Association Rule Mining	
2	To gain detailed insights of outlier detection	Outlier Detection Detection of anomalies, such as the statistical, proximity-based, clustering-based, and classification-based methods.	Class Test (Marks 05)

Evaluation	Details (* please give details of assessment in terms of Unit test/ Project/ quiz /or other assignments and marks allotted for it)	Marks
Internal	 Lab Manuals Practical Test Class Test 	25 Marks
External	Final Examination (Practical)	25 Marks
	Total marks	50 Marks

TEXT BOOKS:

- 1. S.C.Gupta, V.K.Kapoor, Fundamental of Mathematical Statistics
- 2. Efraim Turban, Ramesh Sharda, Dursun Delen, David King, (2013), *Business Intelligence* (2nd Edition), Pearson

REFERENCE BOOKS:

- 1. Swain Scheps, (2008), Business Intelligence for Dummies, Wiley Publications
- 2. Inmon, (1993), Building the Data Warehouse, Wiley
- 3. Dunham, Margaret H, (2006), Data Mining: Introductory and Advanced Topics, Prentice Hall
- 4. Witten, Ian and Eibe Frank, (2011), *Data Mining: Practical Machine Learning Tools and Techniques*, Second Edition, Morgan Kaufmann
- 5. MacLennan Jamie, Tang ZhaoHui and Crivat Bogdan, (2009), *Data Mining with Microsoft* SQL Server 2008, Wiley India Edition

COURSE TITLE : STATISTICS LAB

COURSE OBJECTIVES:

- To equip the students with a working knowledge of probability, statistics, and modelling in the presence of uncertainties.
- To understand the concept of hypothesis and significance tests
- To help the students to develop an intuition and an interest for random phenomena and to introduce both theoretical issues and applications that may be useful in real life.

LEARNING OUTCOMES:

- Distinguish between quantitative and categorical data
- Apply different statistical measures on data
- Identify, formulate and solve problems

Code	Course	Teaching Period / Credit Course Week		Duration of Theory			
		L	Pr./ Tu	Int.	Ext.	Total	Exam (in Hrs.)
MCSL205	Statistics Lab	-	2	1	1	2	1

Module	Objective	Content	Evaluation
No.			
1	To elaborate software for data analysis	Introduction to the software used for data analysis Environment, entering data and formatting, handling data files, performing calculations, handling utilities, formulae and functions	Lab manual for 05 marks
2	To demonstrate visualization of data	Visualizing Handling different types of data variables, creating tables, frequency distribution tables and presenting the data in the forms of Charts, Diagrams, graphs, polygons and plots	Online test of 10 marks

	-	Data Descriptors and Hypothesis	
	methods to find	Testing	marks
3	Measures of Central	Measure of Central Tendencies,	
5	Tendency, dispersion,	Dispersions, skewness, Hypothesis testing	
	Skewness	and estimation, Goodness of Fit	
		Correlation and Regression	
4	To perform Correlation and regression to analyse data	Using SPSS Statistics find correlation and regression in sample data	
	Note: Softwares used	: Advanced Excel, XLMiner, IBM SPSS Stat	istics

Evaluation	Details (* please give details of assessment in terms of Unit test/ Project/ quiz /or other assignments and marks allotted for it)	Marks
Internal	 Lab Manuals Practical Test Online Test 	25 Marks
External	Final Examination (Practical)	25 Marks
	Total marks	50 Marks

TEXT BOOKS:

1. S. C. Gupta, V. K. Kapoor, (2016) Fundamental of Mathematical Statistics

REFERENCE BOOKS:

- 1. Efraim Turban, Ramesh Sharda, Dursun Delen, David King, (2013), *Business Intelligence* (2nd Edition), Pearson
- 2. Swain Scheps, (2008), *Business Intelligence for Dummies*, Wiley Publications
- 3. Healy, K. (2019). Data Visualization A Practical Introduction. USA: Princeton University Press .
- 4. Keith McCormick, J. S. (2017). SPSS Statistics for Data Analysis and Visualization Kindle Edition. USA: WileY.

COURSE TITLE : ADVANCED JAVA LAB

COURSE OBJECTIVES:

- To prepare students to excel and succeed in industry / technical profession through global, rigorous education.
- Excellence through application development.
- To provide students with a solid foundation on Tools, Technology and Framework

LEARNING OUTCOMES:

- Students will demonstrate a high degree of proficiency in programming enabling them for careers in software engineering with competencies to design, develop, implement and integrate software applications and computer systems.
- Students will develop confidence for self-education and ability for life-long learning

Code	Course	Teaching Period / Credit Week		Duration of Theory			
		L	Pr./ Tu	Int.	Ext.	Total	Exam (in Hrs.)
MCSL207	Advanced Java Lab	-	2	1	1	2	1

Module No.	Objective	Content	Evaluation
1	To implement database connectivity in Java Application	JDBC All data base operation using Access /oracle/MySQL as backend	Lab manual for 05 marks
2	To demonstrate the use of Servlets	Servlets A Simple Servlet Generating Plain text/ HTML, program based on cross page posting and post back posting (client request and server response)	Online test of 15 marks
3	To demonstrate the use of Java Server Pages	JSP Sample program to demonstrate JSP syntax and semantics, program based on directive and error object, program based on cookies and Sessions	Practical test of 15 marks
4	To implement MVC architecture	Introduction to Framework: Struts Basic Configuration for struts, Program based on Action validation and control in struts, Program based on integration of JSP and Servlets with struts	Practical test of 15 marks

EVALUATION:

Evaluation	Details (* please give details of assessment in terms of Unit test/ Project/ quiz /or other assignments and marks allotted for it)	Marks
Internal	 Lab Manuals Practical Test Online Test	25 Marks

External	Final Examination (Practical)	25 Marks
	Total marks	50 Marks

TEXT BOOKS:

- 1) Herbert schildt, *The complete reference JAVA2*, (2014)Tata McGraw Hill
- 2) Sharanam Shah and vaishali shah, Core Java for beginners, (2010) SPD

REFERENCE BOOKS:

- 1) Sharanam Shah and vaishali shah, Struts 2 for beginners, (2016)SPD
- 2) Dreamtech, Advance Java-Savalia, Core, Java 6 Programming Black Book, Wiley (2005)
- 3) Marty Hall and Larry Brown, *Core Servlets and Java Server Pages*: Vol I: Core Technologies 2/e, Pearson (2010)
- 4) Sharnam Shah and Vaishali Shah, *Java EE 6 for Server Programming for professionals*, (20180) SPD

COURSE TITLE :ADVANCED PYTHON LAB

COURSE OBJECTIVES:

- To introduce students to use of Python programming to solve data analytics problems
- To elaborate students to statistical analysis using Python programming

LEARNING OUTCOMES:

- The students will be able to improve Problem solving and programming capability
- The students will learn data analytics through python programming

Code	Course		Teaching Period / Week		Credit	Duration of Theory	
		L	Pr./ Tu	Int.	Ext.	Total	Exam (in Hrs.)
MCSL207	Advanced Python Lab	-	2	1	1	2	1

Module No.	Objective	Content	Evaluation
1	To describe various libraries required for data analytics	Operations using Libraries for data analytics Anaconda, Numpy, Scipy, Pandas, Matplotlib, Seaborn, Scikit-learn, Jupyter Notebook: Create Documentation, Code mode, Markdown mode	Lab manual for 05 marks
2	To elaborate statistical analysis using Python	Practical on Statistics using python Mean, Median, Mode, Z-scores, Bias -variance dichotomy, Sampling and t-tests, Sample vs Population statistics, Random Variables, Probability distribution function, Expected value, Binomial	Practical test of 5 marks

		Distributions, Normal Distributions, Central limit Theorem, Hypothesis testing, Z-Stats vs T-stats, Type 1 type 2 error, Chi Square test ANOVA test and F-stats	
3	To study special libraries in Python such as Numpy and Scipy	creating multidimensional arrays, NumPy Data types, Array tributes, Indexing and Slicing, creating array,	Practical test of 10 marks
4	To study special libraries in Python such as Numpy and Scipy	Practical on Matplotlib MATPLOTLIB: Scatter plot, Bar charts, histogram, Stack charts, Legend title Style, Figures and subplots, plotting function in pandas, Labelling and arranging figures, Save plots	Online Class test of 5 marks

Evaluation	Details (* please give details of assessment in terms of Unit test/ Project/ quiz /or other assignments and marks allotted for it)	Marks
Internal	 Lab Manuals Practical Test Online Test 	25 Marks
External	Final Examination (Practical)	25 Marks
	Total marks	50 Marks

TEXT BOOKS:

- 1) Martin C. Brown, *Complete Reference: Python.*, (2015) McGraw Hill
- 2) Brown, M. C. (2018). Python: The Complete Reference Paperback . USA: McGraw Hill Education.

REFERENCE BOOKS:

- 1) Allen Downey, Jeff Elkner and Chris Meyers, (2017), *How To Think Like A Computer Scientist: Learning With Python*, DreamTech
- 2) Wesley J Chun, (2018), *Core Python Programming*, Prentice Hall
- 3) Lutz and David Ascher, (2016), *Learning Python*, O'Reilly

CHOICE BASE CREDIT SYSTEM (CBCS)

COURSE TITLE : DISTRIBUTED SYSTEMS (CBCS)

COURSE OBJECTIVES:

- To learn the principles, architectures, algorithms and programming models used in distributed systems.
- To examine state-of-the-art distributed systems, such as Google File System.
- To design and implement sample distributed systems.
- To transform students' computational thinking from designing applications for a single computer system, towards that of distributed systems.

LEARNING OUTCOMES:

- Identify the core concepts of distributed systems: the way in which several machines orchestrate to correctly solve problems in an efficient, reliable and scalable way.
- Examine how existing systems have applied the concepts of distributed systems in designing large systems, and will additionally apply these concepts to develop sample systems.

Code	Course		Teaching Period / Week		Credit		
		L	Pr./ Tu	Int.	Ext.	Total	Exam (in Hrs.)
MCS208A	Distributed Systems (CBCS)	4	-	2	2	4	2

Module No.	Objective	Content	Evaluation
1	This module will enable students to introduce concepts related to distributed computing systems.	Characterization of Distributed Systems Introduction, Examples of distributed Systems, Resource sharing and the Web Challenges. Architectural models, Fundamental Models. Theoretical Foundation for Distributed System: Limitation of Distributed system, absence of global clock, shared memory, Logical clocks, Lamport's & vectors logical clocks. Concepts in Message Passing Systems: causal order, total order, total causal order, Techniques for Message Ordering, Causal ordering of messages, global state, termination detection.	Written Unit Test – I (Marks 25)
2	This module covers solutions to the problem of mutual exclusion, which is important for correctness in distributed systems with	Distributed Mutual Exclusion Classification of distributed mutual exclusion, requirement of mutual exclusion theorem, Token based and nontoken- based algorithms, performance metric for distributed mutual exclusion algorithms. Distributed Deadlock Detection: system model, resource Vs communication deadlocks, deadlock prevention, avoidance, detection & resolution, centralized dead lock detection, distributed dead lock detection, path pushing algorithms, edge chasing algorithms.	-

	shared		
	resources.		
3	To introduce students to the concept of Agreement protocol and the abstraction & use of file systems	Agreement Protocols Introduction, System models, classification of Agreement Problem, Byzantine agreement problem, Consensus problem, Interactive consistency Problem, Solution to Byzantine Agreement problem, Application of Agreement problem, Atomic Commit in Distributed Database system. Distributed Resource Management: Issues in distributed File Systems, Mechanism for building distributed file systems, Design issues in Distributed Shared Memory, Algorithm for Implementation of Distributed Shared Memory.	Assignments will be given for the above topics. (Marks 5)
4	The students will learn about the Failure Recovery in Distributed Systems and Fault Tolerance concepts	Failure Recovery in Distributed Systems Concepts in Backward and Forward recovery, Recovery in Concurrent systems, Obtaining consistent Checkpoints, Recovery in Distributed Database Systems. Fault Tolerance: Issues in Fault Tolerance, Commit Protocols, Voting protocols, Dynamic voting protocols.	Online Class test will be conducted. (Marks 5)
5	The students will understand the transactions and concurrency Control mechanisms in Distributed systems	Transactions and Concurrency Control Transactions, Nested transactions, Locks, Optimistic Concurrency control, Timestamp ordering, Comparison of methods for concurrency control. Distributed Transactions: Flat and nested distributed transactions, Atomic Commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery. Replication: System model and group communication, Fault - tolerant services, highly available services, Transactions with replicated data.	Online Class test will be conducted. (Marks 5)

Evaluation	Details	Marks			
	(* please give details of assessment in terms of Unit test/ Project/ quiz /or other assignments and marks allotted for it)				
Internal	 Unit test Online Test Assignments 	50 Marks			
External	Final Examination	50 Marks			
	Total marks				

TEXT BOOKS:

- 1) Singhal & Shivaratri, (2006), Advanced Concept in Operating Systems, McGraw Hill
- 2) Ramakrishna, Gehrke, (2007) Database Management Systems, Mc Grawhill

REFERENCE BOOKS:

- 1) Coulouris, Dollimore, Kindberg, (2005), Distributed System: Concepts and Design, Pearson Education
- 2) Tenanuanbaum, Steen, (2001), Distributed Systems, PHI
- 3) Gerald Tel, Distributed Algorithms, Cambridge University Press

COURSE TITLE : COMPUTER GRAPHICS (CBCS)

COURSE OBJECTIVES:

- To understand the concepts of output primitives of Computer Graphics.
- To learn 2D and 3D graphics Techniques.

LEARNING OUTCOMES:

- Demonstrate the algorithms to implement output primitives of Computer Graphics
- Apply and analyse 2D and 3D techniques

Code	Course	Teaching Period / Week			Credit	Duration of Theory	
			Pr./ Tu	Int.	Ext.	Total	Exam (in Hrs.)
MCS209	Computer Graphics (CBCS)	4	-	2	2	4	2

Module	Objective	Content	Evaluation
No.			
1	To introduce students to computer graphics	Introduction to Computer Graphics Elements of Computer Graphics, Graphics display systems	Written Unit Test – I (Marks 25)
2	To elaborate on primitive algorithms to generate outputs	Circle and Ellipse generating algorithms: Mid-point Circle	
3	To introduce students to various transformation		conducted.

	and clipping	systems, Window to Viewport coordinate transformation, Clipping operations – Point clipping Line clipping: Cohen – Sutherland line clipping, Midpoint subdivision, Polygon Clipping: Sutherland – Hodgeman polygon clipping ,Weiler – Atherton polygon clipping	
4	To elaborate on basic 3D and fractal concepts	Basic 3D concepts and Fractals 3D object representation methods: B-REP, sweep representations, CSG, Basic transformations, Reflection, shear, Projections – Parallel and Perspective Halft one and Dithering technique. Fractals and self-similarity: Koch Curves/snowflake, Sirpenski Triangle	topics.

Evaluation	valuation Details				
	(* please give details of assessment in terms of Unit test/ Project/ quiz /or other assignments and marks allotted for it)				
Internal	 Unit test Online Test Assignments 	50 Marks			
External	Final Examination	50 Marks			
	100 Marks				

TEXT BOOKS:

- 1) David F. Rogers, James Alan Adams, (1990), *Mathematical elements for computer graphics*, McGraw-Hill
- 2) Bloomenthal, J. (2019). Computer Graphics: Implementation and Explanation Paperback. USA: Independently published.
- 3) Fabio Ganovelli, M. C. (2019). Introduction to Computer Graphics: A Practical Learning Approach (Chapman & Hall/CRC Computer Graphics, Geometric Modeling, and Animation). USA: Chapman and Hall/CRC.

REFERENCE BOOKS:

- 1) Donald Hearn and M Pauline Baker, *Computer Graphics* C Version (2015) Pearson Education.
- 2) Rafael C. Gonzalez and Richard E. Woods, *Digital Image Processing* (3rd Edition) (2016), Pearson Education.

COURSE TITLE : NATURAL LANGUAGE PROCESSING (CBCS)

COURSE OBJECTIVES:

- This course introduces the fundamental concepts and techniques of natural language processing (NLP).
- Students will gain an in-depth understanding of the computational properties of natural languages and the commonly used algorithms for processing linguistic information.

LEARNING OUTCOMES:

- Understand key concepts from NLP those are used to describe and analyze language
- Understand POS tagging and context free grammar for English language
- Understand semantics and pragmatics of English language for processing

Code	Course	Teaching Period / Week		Credit			Duration of Theory
		L	Pr./ Tu	Int.	Ext.	Total	Exam (in Hrs.)
MCS208C	Natural Language Processing (CBCS)	4	-	2	2	4	2

Module	Objective	Content	Evaluation
No.			
1	To introduce students to text representation in computers	Introduction Human languages, models, ambiguity, processing paradigms; Phases in natural language processing, applications., Text representation in computers, encoding schemes., Linguistics resources- Introduction to corpus, elements in balanced corpus, TreeBank, PropBank, WordNet, VerbNet etc. Resource management with XML, Management of linguistic data with the help of GATE, NLTK.	Written Unit Test – I (Marks 25)
2	To elaborate on finite state automata	on finite state Stochastic POS tagging, HMM, Transformation based tagging (TBL) Handling of unknown words named	
3	To introduce students on parsing	Parsing Unification, probabilistic parsing, TreeBank. Semantics- Meaning representation, semantic analysis, lexical	Assignments will be given for the above topics. (Marks 5)

		pronoun resolution, text coherence, discourse structure	
4	To demonstrate uses of NLP	Applications of NLP Spell-checking, Summarization Information Retrieval- Vector space model, term weighting, homonymy, polysemy, synonymy, improving user queries. Machine Translation– Overview.	conducted.

Evaluation	Evaluation Details				
	(* please give details of assessment in terms of Unit test/ Project/ quiz /or other assignments and marks allotted for it)				
Internal	 Unit test Online Test Assignments 	50 Marks			
External	Final Examination	50 Marks			
	100 Marks				

TEXT BOOKS:

- 1) Daniel Jurafsky and James H Martin. (2009), *Speech and Language Processing*, 2e, Pearson Education
- 2) Dwight Gunning, S. G. (2019). Natural Language Processing Fundamentals: Build Intelligent Applications that Can Interpret the Human Language to Deliver Impactful Results. USA: Packt publishing.

REFERENCE BOOKS:

- 1) James A. (1994), *Natural language Understanding* 2e, Pearson Education
- 2) Bharati A., Sangal R., Chaitanya V. (2000), *Natural language processing: a Paninian perspective*, PHI
- 3) Siddiqui T., Tiwary U. S.. (2008), Natural language processing and Information retrieval, OUP

COURSE: SWAYAM OR OTHER ONLINE COURSES (CBCS) CREDIT - 04

OBJECTIVES:

Through the medium of online courses we aim to:

- Offer high quality, job-relevant online education to students
- Engage learners in the learning process by better user-accessibility and time flexibility.
- Help the students in their endless pursuit of knowledge through online resources such as videos, research papers, books, articles & course modules

• Provide a user-friendly platform for learner that can help them in achieving their goals in their desired working area.

OUTCOMES:

On completion of the online course, the student will be able to:

- Earn credits on completion of the course
- Learn courses that are valuable to them professionally and personally & enhance their employability quotient
- Graduate with an industry-relevant university credential

Code No.	Course	TC	Th C	Tu C	Int	Ext	Total
BCA208D	SWAYAM OR OTHER ONLINE COURSES (CBCS)	4	2	2	50	50	100

Sr. No.	Name of the Course	Portal	Duration	Enrolment date	Exam date
1	Deep Learning	NPTEL	12 weeks	14-Sep-2020 to	19-Dec- 2020
	By Prof. Prabir Kumar Biswas – IIT Kharagpur			21-Sep-2020	
2	Programming, Data Stuctures & Algorithms using Python	NPTEL	8 weeks	14-Sep-2020 to 21-Sep-2020	18-Dec- 2020
	By Prof. Madhavan Mukund – Chennai Mathematical Institute				
3	Fundamentals of Artificial Intelligence	NPTEL	12 weeks	14-Sep-2020 to 21-Sep-2020	19-Dec- 2020
	By Prof. Shyamanta M. Hazarika – IIT Guwahati				
4	Introduction to Machine Learning By Prof. Balaraman Ravindran – IIT Madras	NPTEL	12 weeks	14-Sep-2020 to 21-Sep-2020	20-Dec- 2020

5	Introduction to Internet of Things By Prof. Sudip Misra – IIT Kharagpur	NPTEL	12 weeks	14-Sep-2020 to 21-Sep-2020	20-Dec- 2020
6	Introduction to Robotics By Prof. Asokan T, Prof. Balaraman Ravindran, Prof. Krishna Vasudevan – IIT Madras	NPTEL	12 weeks	14-Sep-2020 to 21-Sep-2020	20-Dec- 2020